波多野结衣办公室双飞_制服 丝袜 综合 日韩 欧美_网站永久看片免费_欧美一级片在线免费观看_免费视频91蜜桃_精产国品一区二区三区_97超碰免费在线观看_欧美做受喷浆在线观看_国产熟妇搡bbbb搡bbbb_麻豆精品国产传媒

Global EditionASIA 中文雙語Fran?ais
China
Home / China / Environment

Deep learning model identifies invasive seeds

By Chen Liang | China Daily | Updated: 2025-06-10 09:08
Share
Share - WeChat

In the battle against invasive species, researchers in China have developed a groundbreaking deep learning model that significantly improves the accuracy and efficiency of identifying invasive plant seeds, providing vital support for national quarantine, agriculture and ecological protection efforts.

Invasive species are a growing global threat to both ecological systems and economic stability. China, in particular, has seen a dramatic rise in related challenges, intercepting nearly 400 invasive species annually and handling around 70,000 quarantine cases each year. The task of identifying these invasive seeds is daunting, calling for prompt and precise identification to prevent harm to ecosystems, the economy, and society at large.

However, traditional methods of identifying and preventing the entry of invasive species rely heavily on the extensive experience of a limited number of specialists. These methods are time-consuming and often struggle to distinguish seeds with similar morphological features.

To address this, a research team from the Zhejiang Sci-Tech University and Shanghai Chenshan Botanical Garden has been pioneering the development of automated seed identification technologies based on deep learning. In 2022, the team achieved a major milestone by creating a deep learning target detection algorithm capable of rapid seed classification with an accuracy of up to 93.96 percent.

Building on this success, the researchers released an even more powerful model earlier this year, which achieved an overall accuracy of 99.10 percent in classifying seeds — even those with highly similar morphologies. Their groundbreaking work, titled "High-accuracy classification of invasive weed seeds with highly similar morphologies: Utilizing hierarchical bilinear pooling for fine-grained image classification", was recently published in the international journal Smart Agricultural Technology.

Yang Lianghai, the lead author and a graduate student jointly trained by Zhejiang Sci-Tech University and the Shanghai Chenshan Botanical Garden, shared insights into the project in an interview with China Daily.

"The model we developed in 2022 laid the foundation for a practical mobile application that could enable quarantine officers to scan and identify seeds directly with their smartphones," Yang explained. "It marked an initial demonstration of how deep learning could transform invasive seed identification by boosting both speed and accuracy."

While the early model was a promising step forward, Yang said that it faced notable limitations. "It struggled to distinguish seeds with extremely similar appearances, and the limited size of our image dataset also constrained its performance," he said. "To address this, we systematically expanded our database by collecting seed images from 168 invasive plant species across 33 families and 91 genera, captured under various environmental conditions and angles to better represent real-world complexity."

Building on this expanded dataset, the team designed a novel image classification model based on hierarchical bilinear pooling — a technique that combines features across multiple levels to better capture subtle distinctions in texture, shape and surface structure of seeds.

The result was a dramatic leap in performance. The new model achieved an overall classification accuracy of 99.10 percent. Even for seeds smaller than 1 millimeter or those with highly similar appearances — such as species from the Amaranthus or Euphorbia genera — classification accuracies remained impressively high, often exceeding 97 percent.

"This breakthrough greatly improves the efficiency and reliability of invasive seed identification," said Jiang Min, another member of the research team. "It provides a practical tool for frontline personnel in customs, agriculture and conservation to capture high-resolution seed images and use our model to quickly determine whether a specimen belongs to a regulated invasive species."

Jiang added: "Our two models serve different but complementary purposes. One offers fast and user-friendly operation for field applications, while the other ensures high accuracy when dealing with complex or ambiguous cases."

Currently, both models are based on two-dimensional seed images, she said. "In the future, we aim to develop three-dimensional image recognition systems to more comprehensively integrate various seed characteristics and further enhance identification accuracy," Jiang said.

As international trade accelerates, the risk of introducing invasive plant species continues to rise. This artificial intelligence-driven approach strengthens biosecurity while maintaining trade efficiency, Jiang said. By combining innovation with practical application, she said that the technology supports broader use in customs, agriculture, and ecological monitoring.

"It advances our national efforts to safeguard biodiversity and build ecological resilience, while offering a scalable and transferable solution for other countries," said Yan Xiaoling, the principal investigator of the team from Shanghai Chenshan Botanical Garden.

Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
波多野结衣办公室双飞_制服 丝袜 综合 日韩 欧美_网站永久看片免费_欧美一级片在线免费观看_免费视频91蜜桃_精产国品一区二区三区_97超碰免费在线观看_欧美做受喷浆在线观看_国产熟妇搡bbbb搡bbbb_麻豆精品国产传媒
日本黄色网址大全| 久久人人超碰精品| 亚洲精品乱码久久久久久| 国产一区在线不卡| 成人无码av片在线观看| 精品国产乱码久久| 久久精品国产99国产| 精品无码国产污污污免费网站 | 久久99在线观看| 黄色在线观看av| 日韩欧美自拍偷拍| 美女脱光内衣内裤视频久久影院| 无码人妻精品一区二区三区温州| 欧美一区二区三区人| 日韩av电影天堂| 成人h动漫精品一区| 精品美女在线播放| 国内久久婷婷综合| 日本视频在线免费| 国产精品丝袜91| 99久久er热在这里只有精品15| 色婷婷国产精品综合在线观看| 亚洲精品国产视频| 韩国黄色一级片| 欧美一区国产二区| 九九视频精品免费| www.99re6| 亚洲精品亚洲人成人网| 精品国产免费久久久久久婷婷| 欧美丰满美乳xxx高潮www| 日韩中文字幕91| 欧美丰满美乳xxⅹ高潮www| 久久久精品天堂| 不卡高清视频专区| 欧美日韩在线直播| 免费观看成人av| 又色又爽的视频| 亚洲女爱视频在线| 中文在线观看免费视频| 精品国产污污免费网站入口| 国产馆精品极品| 欧美午夜一区二区三区| 日韩国产欧美在线播放| 四季av中文字幕| 亚洲男同性恋视频| 欧美成人三级伦在线观看| 久久久久久夜精品精品免费| 北岛玲一区二区三区四区| 欧美日韩国产一级| 经典三级视频一区| 色综合色综合色综合色综合色综合 | 在线观看成人免费视频| 视频一区视频二区中文字幕| 亚洲图片第一页| 一区二区三区在线观看动漫 | 成人做爰www看视频软件| 精品国产污网站| eeuss影院一区二区三区| 日韩一区二区电影在线| 国产成人aaaa| 欧美一区二区精美| 成人性色生活片免费看爆迷你毛片| 欧美日韩精品一区二区三区蜜桃 | 这里是久久伊人| 国产一区二区三区| 欧美日韩国产经典色站一区二区三区| 麻豆成人免费电影| 91成人网在线| 国产在线精品视频| 欧美日韩国产电影| 国产成人在线影院| 日韩欧美中文字幕精品| 99免费精品在线观看| 欧美成人伊人久久综合网| av高清不卡在线| 久久网站最新地址| 无码人妻一区二区三区免费n鬼沢| 久久精品欧美日韩| 800av在线播放| 亚洲欧美偷拍卡通变态| 91精品国自产在线| 亚洲一区二区不卡免费| 国产福利视频网站| 免费日韩伦理电影| 欧美色图12p| 成人免费观看视频| 久久久九九九九| 我和岳m愉情xxxⅹ视频| 亚洲国产精品久久久久秋霞影院 | 日韩午夜在线播放| 91在线观看污| 国产精品水嫩水嫩| 国产精品天天干| 日韩精品1区2区3区| 在线观看av一区二区| 国产不卡视频在线播放| 精品国产麻豆免费人成网站| 最新国产精品自拍| 亚洲精品日韩专区silk| 欧美肥妇bbwbbw| 精品一区二区三区av| 日韩欧美一级特黄在线播放| 国产亚洲精品成人a| 一区二区三区在线看| 色在线观看视频| 国产精品系列在线播放| 久久一区二区视频| 欧美特黄一区二区三区| 日韩激情av在线| 欧美日本高清视频在线观看| 91麻豆swag| 亚洲精品中文在线观看| 久久久久亚洲AV成人| 国产成人福利片| 日本一区二区不卡视频| 快灬快灬一下爽蜜桃在线观看| 麻豆91精品91久久久的内涵| 欧美大尺度电影在线| 在线免费观看黄色小视频| 午夜影院在线观看欧美| 欧美日本在线观看| 久久久久久久久久影视| 亚洲国产毛片aaaaa无费看| 欧美色精品在线视频| 亚洲欧美激情一区二区三区| 亚洲最大成人综合| 欧美色爱综合网| 无码人妻一区二区三区在线| 亚洲第一会所有码转帖| 在线成人av影院| 国产精品嫩草av| 免费成人深夜小野草| 久久这里只精品最新地址| 欧美福利第一页| 国产一区不卡视频| 久久久精品欧美丰满| 91精品国自产在线| 国产成人av一区| 亚洲色欲色欲www在线观看| 在线亚洲一区二区| av电影中文字幕| 日产国产欧美视频一区精品 | 激情综合网最新| 国产亚洲欧美色| 欧美第一页在线观看| 91色在线porny| 五月婷婷综合激情| 精品国内二区三区| 中文乱码字幕高清一区二区| 成人免费看的视频| 亚洲国产日韩精品| 欧美r级在线观看| 天天爽天天爽天天爽| 不卡视频免费播放| 亚洲国产精品一区二区久久恐怖片| 日韩欧美亚洲国产另类| 欧日韩不卡视频| 91免费视频观看| 日韩成人精品视频| 国产视频不卡一区| 在线视频一区二区三| 国产亚洲色婷婷久久99精品91| 狠狠色狠狠色综合系列| 亚洲欧洲日产国码二区| 欧美日韩精品三区| 舐め犯し波多野结衣在线观看| 成人午夜在线播放| 性感美女久久精品| 久久精品水蜜桃av综合天堂| 在线视频国产一区| 熟女少妇一区二区三区| 成人免费毛片a| 日韩二区三区四区| 国产精品无遮挡| 欧美老肥妇做.爰bbww视频| 免费观看a级片| 91麻豆免费看| 黄色日韩三级电影| 亚洲免费电影在线| 精品91自产拍在线观看一区| 日本高清不卡一区| 91精品国产自产| 成人高清视频在线观看| 日韩和的一区二区| 国产精品久久久久国产精品日日| 7777精品久久久大香线蕉| av最新在线观看| 亚洲熟女乱综合一区二区三区 | 久久久久久久久蜜桃| 欧美亚洲愉拍一区二区| 亚洲精品国产一区黑色丝袜| 成人三级做爰av| 国产美女精品在线| 午夜精品久久久久久久| 国产精品欧美久久久久一区二区| 6080yy午夜一二三区久久| 欧美丰满熟妇bbbbbb| 色婷婷在线影院| 丰满人妻一区二区三区免费视频棣| 国产成人综合亚洲网站|