波多野结衣办公室双飞_制服 丝袜 综合 日韩 欧美_网站永久看片免费_欧美一级片在线免费观看_免费视频91蜜桃_精产国品一区二区三区_97超碰免费在线观看_欧美做受喷浆在线观看_国产熟妇搡bbbb搡bbbb_麻豆精品国产传媒

Global EditionASIA 中文雙語Fran?ais
China
Home / China / National affairs

Polluted data poses risk to AI safety, ministry says

By Zou Shuo | China Daily | Updated: 2025-08-06 09:07
Share
Share - WeChat

The Ministry of State Security issued a stark warning on Tuesday about artificial intelligence security risks stemming from contaminated training data, calling it a fundamental challenge to AI safety.

In an article published on its official WeChat account, the ministry said AI data sources are often polluted by mixed-quality content containing false information, fabricated narratives and biased viewpoints. As AI is increasingly integrated into China's socioeconomic sectors, such contamination poses risks to high-quality development and national security, it said.

Data serves as the essential foundation for AI systems, providing the raw material for models to learn patterns, make decisions and generate content, the ministry said. It warned that compromised data quality directly undermines model reliability. Citing research, it noted that even a small contamination level — such as 0.01 percent of false text — can increase harmful outputs by 11.2 percent.

The ministry also highlighted the danger of "recursive pollution", in which false content generated by AI becomes part of training datasets for future models, leading to compounding errors. Real-world risks include financial market manipulation through fabricated information, public panic triggered by misinformation and life-threatening medical misjudgments from corrupted diagnostic algorithms, it said.

To counter these threats, the ministry proposed stricter source supervision under current cybersecurity and data protection laws, comprehensive risk assessments and systematic data-cleansing frameworks. It pledged to collaborate with relevant agencies to safeguard AI and data security under China's national security framework.

Zhang Xi, deputy dean and professor at the School of Cyberspace Security at the Beijing University of Posts and Telecommunications, said China faces particular vulnerability due to a shortage of high-quality Chinese-language training data. Chinese data makes up only 1.3 percent of global large-model datasets, he said.

This scarcity, along with copyright restrictions and inadequate data infrastructure, has forced domestic developers to rely on lower-quality sources such as machine-translated or synthetic content, which worsens data pollution and hinders progress in Chinese AI development, he said.

Zhang cited the GPT-3 model, which was trained on 750 gigabytes of data, and China's DeepSeek-V3 model, trained on 14.8 trillion high-quality text fragments. These datasets are drawn from massive libraries of books, academic papers, online texts and code. But due to their scale, manual inspection is neither feasible nor cost-effective, making data contamination an increasingly serious bottleneck, he said.

Polluted training data also creates unpredictable risks in high-stakes fields such as medicine, autonomous driving and national defense, Zhang said. He cited a study in which the insertion of 5,000 fabricated medical records raised misdiagnosis rates by 73 percent. In another example, inserting three manipulated image frames caused autonomous vehicles to mistake pedestrians for garbage bags, leading to 92 percent collision rates in testing.

Zhang also warned of malicious data poisoning campaigns, in which adversarial actors inject content contrary to China's core socialist values. He pointed to foreign-developed models that generated separatist content related to the Xizang autonomous region as an example.

To protect data sovereignty, Zhang advocated for greater investment in domestic data collection and the establishment of national public data platforms. He also called for legal mechanisms to criminalize malicious data poisoning and assign liability for data contamination caused by negligence, with responsibilities clarified for developers, data providers and operators.

Shen Yang, a professor at Tsinghua University's School of Journalism and Communication and College of AI, defined AI data pollution as the inclusion of erroneous, incomplete, biased or deliberately manipulated content in training data.

This fundamentally weakens AI models' comprehension, judgment and output reliability, he said.

Shen compared polluted training data to "cooking with spoiled ingredients".

He said malicious actors may seek to manipulate AI on sensitive topics, mislead the public, undermine competitors or probe vulnerabilities in AI systems. While such acts are usually isolated rather than coordinated conspiracies, their cumulative impact can erode public trust in AI, he said.

For the general public, Shen said it is essential to understand that AI-generated content can shape — or distort — their perception of reality. "They need to see through the logic behind AI, just like identifying the motives behind people's words," he said.

Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
波多野结衣办公室双飞_制服 丝袜 综合 日韩 欧美_网站永久看片免费_欧美一级片在线免费观看_免费视频91蜜桃_精产国品一区二区三区_97超碰免费在线观看_欧美做受喷浆在线观看_国产熟妇搡bbbb搡bbbb_麻豆精品国产传媒
洋洋av久久久久久久一区| 紧缚捆绑精品一区二区| 国产精品国产三级国产| 欧美国产精品一区二区三区| 依依成人综合视频| 激情亚洲综合在线| 日韩精品电影一区二区| 色婷婷综合五月| 日韩精品一区二区三区视频| 日韩视频一区二区三区| 亚洲视频免费在线观看| 久久精品免费观看| 国产成人在线视频网址| xxxxxx黄色| 色综合久久久久| 精品成人免费观看| 亚洲福利一区二区三区| 国产成人精品一区二区三区网站观看| 性欧美18—19sex性高清| 性色av无码久久一区二区三区| 色综合久久天天综合网| 日韩欧美亚洲国产精品字幕久久久 | 麻豆91在线播放免费| 一级黄色免费毛片| 色呦呦一区二区| 欧美怡红院视频| 日韩欧美一区二区不卡| 免费久久精品视频| 这里只有精品在线观看视频| 日韩欧美三级在线| 国产一区二区久久| 亚洲精品乱码久久久久久久久久久久| 欧美日韩在线播| 精品盗摄一区二区三区| 五月激情六月综合| 国产剧情一区二区三区| 久久成人激情视频| 国产日韩欧美综合在线| 亚洲在线成人精品| 91欧美一区二区| 欧美一区二区三区免费在线看| 国产日韩欧美一区二区三区乱码 | 中文字幕欧美国产| 国产在线精品视频| 久久日免费视频| 欧美理论在线播放| 亚洲制服丝袜av| 午夜理伦三级做爰电影| 在线观看免费成人| 亚洲人成在线观看一区二区| 中文字幕三级电影| 国产欧美一区二区精品性| 丝袜诱惑亚洲看片| 在线天堂www在线国语对白| 欧美男男青年gay1069videost| 欧美国产日韩一二三区| 无套白嫩进入乌克兰美女| 日本道精品一区二区三区| 亚洲欧美色图小说| 亚洲精品久久久久久| 欧美成人一区二区三区在线观看| 免费日本视频一区| 麻豆视频在线免费看| 日韩精品免费专区| 黄瓜视频污在线观看| 欧美日韩一本到| 国产综合色产在线精品| 成人黄色短视频| 国产精品乱码人人做人人爱| 不卡区在线中文字幕| 91黄视频在线| 国内偷窥港台综合视频在线播放| 少妇太紧太爽又黄又硬又爽小说| 国产日韩欧美在线一区| 成人综合日日夜夜| 欧美亚洲自拍偷拍| 亚洲成a天堂v人片| 国产交换配乱淫视频免费| 精品国产乱码久久久久久久| 99麻豆久久久国产精品免费优播| 操她视频在线观看| 三级精品在线观看| 91久久精品网| 日韩中文字幕一区二区三区| 精品自拍偷拍视频| 久久99热狠狠色一区二区| 欧美日韩国产高清一区| 成人一级黄色片| 久久久五月婷婷| 99精品视频免费在线观看| 在线播放91灌醉迷j高跟美女 | 无码av免费一区二区三区试看| 亚洲最大成人网站| 亚洲国产va精品久久久不卡综合| 无遮挡aaaaa大片免费看| 亚洲精品成人a在线观看| 伊人久久久久久久久久久久久久| 久久久久久久久久美女| 稀缺小u女呦精品呦| 国产精品超碰97尤物18| 欧美黄色激情视频| 国产精品理伦片| 亚洲av毛片基地| 日本欧美加勒比视频| 三级黄色片网站| 亚洲一区二区三区四区在线观看| 日韩av一二区| 亚洲成人精品在线观看| 内射一区二区三区| 天堂蜜桃91精品| 精品视频一区 二区 三区| 不卡一卡二卡三乱码免费网站| 欧美日韩国产精品自在自线| 9久草视频在线视频精品| 日韩一级在线观看| xfplay5566色资源网站| 一区二区不卡在线播放| 色悠悠亚洲一区二区| 成人动漫中文字幕| 国产精品国产精品国产专区不片| 国产 xxxx| 亚洲第一福利视频在线| 欧美美女直播网站| 国产十八熟妇av成人一区| 亚洲成va人在线观看| 欧美精品777| 丁香网亚洲国际| 欧美www视频| 国产成人在线视频网站| 国产人成一区二区三区影院| www.17c.com喷水少妇| 亚洲成a人片在线不卡一二三区| 国产精品视频看看| 粉嫩av一区二区三区粉嫩| 精品免费日韩av| 人妻少妇无码精品视频区| 韩国一区二区三区| 亚洲国产精品av| 色无极影院亚洲| 国模少妇一区二区三区| 欧美v亚洲v综合ⅴ国产v| 第一次破处视频| 国产老妇另类xxxxx| 国产精品国产三级国产a| 在线日韩一区二区| 亚洲高清无码久久| 免费成人在线视频观看| 久久久久久**毛片大全| 国产 中文 字幕 日韩 在线| 蜜乳av一区二区| 久久婷婷一区二区三区| 黄色短视频在线观看| 亚洲影视在线观看| 91精品国产一区二区三区香蕉| 国产福利电影一区二区三区| 国产精品久久久久久久裸模 | 欧美三级电影一区| www.日本高清| 国产美女av一区二区三区| 亚洲欧美在线高清| 天天看天天摸天天操| 91亚洲精华国产精华精华液| 国产精品福利在线播放| 欧美丝袜第三区| 性色av浪潮av| 青草国产精品久久久久久| 国产蜜臀97一区二区三区| 色天使久久综合网天天| 欧美无人区码suv| 国产精品乡下勾搭老头1| 久久久久久99精品| 色哦色哦哦色天天综合| 久久久老熟女一区二区三区91| 亚洲另类在线一区| 日韩亚洲欧美一区二区三区| 永久av免费网站| 国产99久久久久久免费看农村| 亚洲国产成人自拍| 欧美日韩激情在线| 欧美激情视频二区| 中文字幕在线观看视频www| 亚洲一区二区三区美女| 欧美性一区二区| 少妇无套高潮一二三区| 韩国精品主播一区二区在线观看| 久久亚洲欧美国产精品乐播| 色综合久久综合中文综合网| 成人免费毛片片v| 日韩和欧美的一区| 成人欧美一区二区三区1314| 日韩欧美在线123| 日本黄色一区二区| 国产真人做爰视频免费| 国产成人夜色高潮福利影视| 午夜精品福利久久久| 国产精品成人一区二区三区夜夜夜| 色先锋资源久久综合| 欧美熟妇激情一区二区三区| 国产乱子伦一区二区三区国色天香| 国产精品色一区二区三区|